Home About us Editorial board Ahead of print Browse Articles Search Submit article Instructions Subscribe Contacts Login 
  • Users Online: 1959
  • Home
  • Print this page
  • Email this page
Year : 2017  |  Volume : 22  |  Issue : 1  |  Page : 40

Transcription factor 7-like 2 polymorphism and context-specific risk of metabolic syndrome, type 2 diabetes, and dyslipidemia

1 Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Biochemistry, Isfahan Payame Noor University, Isfahan, Iran
3 Department of Medical Genetics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence Address:
Abbasali Palizban
Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
Mahnaz Rezaei
Department of Biochemistry, Isfahan Payame Noor University
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1735-1995.202141

Rights and Permissions

Background: The transcription factor 7-like 2 gene (TCF7L2) is an element of the Wnt signaling pathway. There is lack of evidence if TCF7L2 has a functional role in lipid metabolism and regulation of the components constitutes the metabolic syndrome (MetSyn). The aims of this study were to evaluate whether the risk allele of TCF7L2 gene polymorphism is associated with dyslipidemia and MetSyn. Materials and Methods: The MetSyn subjects were participated only based on the National Cholesterol Education Program – Third Adult Treatment Panel criteria. In this case–control study, the DNA from MetSyn patients without (n = 90) and with type 2 diabetes (T2D) (n = 94) were genotyped. Results: The results show that the genotype-phenotype for CC, CT/TT of TCF7L2 gene polymorphism correlated with body mass index and waist circumference in MetSyn and MetSyn + T2D subjects (r = −0.949 and r = −0.963, respectively). The subjects that only possess MetSyn but are not diabetics show the 2 h postprandial glucose and fasting blood glucose, glycated hemoglobin significantly lower (P < 0.05) than those subjects have both abnormality. The level of triglyceride in CT/TT carriers in MetSyn was higher than CC carriers (P = 0.025). A comparison with the controls subjects, the frequencies of the T allele in the groups of MetSyn (46.66%) and MetSyn + T2D (47.34%) show significantly different (P < 0.05). The odds ratios for T allele in (MetSyn)/(normal), (MetSyn + T2D)/(normal), and in (MetSyn + T2D)/(MetSyn) were 3.59 (95% confidence interval [CI], 1.33–9.67, P = 0.0093), 3.76 (95% CI, 1.40–10.07, P = 0.0068), and 1.08 (95% CI: 0.55 2.11, P = 0.834), respectively. Conclusion: The results revealed the important insights essential for the role of TCF7L2 that the T allele of TCF7L2 plays a significant role in the susceptibility to dyslipidemia, MetSyn, and T2D.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded340    
    Comments [Add]    
    Cited by others 9    

Recommend this journal