Journal of Research in Medical Sciences

ORIGINAL ARTICLE
Year
: 2019  |  Volume : 24  |  Issue : 1  |  Page : 32-

Regulation of PI3K and Hand2 gene on physiological hypertrophy of heart following high-intensity interval, and endurance training


Mohammad Ali Gharaat1, Majid Kashef1, Behnam Jameie2, Hamid Rajabi3 
1 Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
2 Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
3 Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran

Correspondence Address:
Dr. Mohammad Ali Gharaat
Shahid Rajaee Teacher Training University, Shaebanlou Street, Tehran
Iran

Background: Physical training signals cardiac hypertrophy through PI3K as an upstream and Hand2 gene as a downstream agent. The present study aimed to find the role of PI3K and Hand2 gene in myocardial hypertrophy following interval and endurance training (ET). Materials and Methods: Twenty-four adult Wistar male rats (210–250 g) randomly divided into control, sham, high-intensity interval training (HIIT), and ET group. Swimming time in ET increased incrementally 30–75 min, whereas in HIIT, load/body weight, and time/rest ratio increased within 12 weeks. Heart morphometry, including left ventricle end systolic (LVESV) and Diastolic (LVEDV) volume, LV posterior wall (LVPW), stroke volume (SV), ejection fraction (EF), fraction shortening (%FS), pure heart weight (HW) and left ventricle weight (LVW), and PI3K and Hand2 gene expression were measured. Results: HW and LVW were significantly more than control after ET (P < 0.05) and HIIT (P < 0.05). Both of the training groups demonstrated significantly thicker LVPW (P < 0.05), SV (P < 0.05), and %FS (P < 0.05). Furthermore, PI3K concentration and Hand2 expression significantly increased in ET (P < 0.001; P < 0.001, respectively) and HIIT (P < 0.05; P < 0.001, respectively) compared to control. Conclusion: It can be concluded that this training protocol caused physiological hypertrophy in both of ET and HIIT groups, whereas HIIT can be more beneficial because of shorter training time.


How to cite this article:
Gharaat MA, Kashef M, Jameie B, Rajabi H. Regulation of PI3K and Hand2 gene on physiological hypertrophy of heart following high-intensity interval, and endurance training.J Res Med Sci 2019;24:32-32


How to cite this URL:
Gharaat MA, Kashef M, Jameie B, Rajabi H. Regulation of PI3K and Hand2 gene on physiological hypertrophy of heart following high-intensity interval, and endurance training. J Res Med Sci [serial online] 2019 [cited 2020 Feb 24 ];24:32-32
Available from: http://www.jmsjournal.net/article.asp?issn=1735-1995;year=2019;volume=24;issue=1;spage=32;epage=32;aulast=Gharaat;type=0