Home About us Editorial board Ahead of print Browse Articles Search Submit article Instructions Subscribe Contacts Login 
  • Users Online: 510
  • Home
  • Print this page
  • Email this page
REVIEW ARTICLE
Year : 2020  |  Volume : 25  |  Issue : 1  |  Page : 56

Association of microRNA gene polymorphisms with Type 2 diabetes mellitus: A systematic review and meta-analysis


1 Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
2 Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
3 Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
4 Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

Correspondence Address:
Prof. Mahsa Mohammad Amoli
Metabolic Disorders Research Center, Endocrinology and Metabolism Research Institute, Shariati Hospital, 5th Floor, North Kargar Avenue, Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrms.JRMS_751_19

Rights and Permissions

Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder with growing prevalence and increasing economic burden. Based on the role of genetics and epigenetic factors on T2DM, we aimed to carry a systematic review and meta-analysis for all miRNA gene polymorphisms and risk of T2DM. Materials and Methods: A computerized literature search was carried out on PubMed, Web of Science, Scopus, Embase, as well as references of relevant review/meta-analysis. Key search terms were “Diabetes Mellitus, Type 2,” “MicroRNAs,” and “Polymorphism, Single Nucleotide.” All types of observational studies from January 1, 1992, to November 30, 2019, were included, without language restriction. Data analysis was performed using R programming language (3.5.2). Level of heterogeneity was obtained by Cochran's Q test (P < 0.05), and subgroup analysis was performed based on ethnicity. Results: Thirty-two polymorphisms from fifteen articles were included. Meta-analysis was carried out based on minor allele frequencies. Seven studies with 2193 cases and 3963 controls were included for rs2910164 polymorphism. In subgroup analysis, there were significant results in Caucasian population in dominant model (odds ratio [OR] =1.12; 95% confidence interval [CI]: 0.83–1.51), homozygote model (OR = 1.78; 95% CI: 1.06–3.00), heterozygote model (OR = 1.77; 95% CI: 1.03–3.05), and recessive model (OR = 1.78; 95% CI: 1.07–2.96). Four studies with 2085 cases and 1933 controls were included for rs895819 polymorphism. Overall, there was no significant result for association with rs895819, but subgroup analysis revealed that minor allele significantly decreased the risk of T2DM in Caucasians by recessive model (OR = 0.34; 95% CI: 0.18–0.66), dominant model (OR = 0.70; 95% CI: 0.52–0.94), homozygote model (OR = 0.32; 95% CI: 0.16–0.62), heterozygote model (OR = 0.37; 95% CI: 0.19–0.74), allelic model (OR = 0.67; 95% CI: 0.52–0.85). Conclusion: The minor allele of rs2910164 may increase the risk of T2DM by leading to lower level of miR-146a. In contrast, minor allele of rs895819 may decrease the risk of T2DM by leading to higher level of miR-27a.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed32    
    Printed0    
    Emailed0    
    PDF Downloaded9    
    Comments [Add]    

Recommend this journal