Home About us Editorial board Ahead of print Browse Articles Search Submit article Instructions Subscribe Contacts Login 
  • Users Online: 615
  • Home
  • Print this page
  • Email this page


 
Previous article Browse articles Next article 
SHORT COMMUNICATION
J Res Med Sci 2019,  24:72

The glucose metabolism disorder and dyslipidemia among girls with different phenotype polycystic ovary syndrome


1 Department of Midwifery, Maternal–Fetal Medicine Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
2 Community Based Psychiatric Care Research Centre, Department of Midwifery, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
3 Department of Internal Medicine, Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Date of Submission09-Nov-2016
Date of Decision23-May-2018
Date of Acceptance01-May-2019
Date of Web Publication28-Aug-2019

Correspondence Address:
Mrs. Marzieh Akbarzadeh
Department of Midwifery, Maternal–Fetal Medicine Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrms.JRMS_804_16

Clinical trial registration IRCT2015042922009N1

Rights and Permissions
  Abstract 


Background: This study aimed to determine the prevalence of glucose metabolism disorder and dyslipidemia in 14–18-year-old girls with different phenotype polycystic ovary syndrome (PCOS). Materials and Methods: This descriptive, cross-sectional study was conducted on 3200 high-school adolescents aged 14–18 years in Shiraz in 2010. Selected parameters of metabolic syndrome (fasting blood glucose, glucose tolerance test [GTT], insulin level, triglyceride (TG), cholesterol, and high-density lipoprotein [HDL]), based on adult treatment panel ø definition criteria, were compared between the “PCOS” and control groups. Results: Results were compared at four main phenotypes. The level of serum TG was increased in the Phenotype B (P = 0.03) and Phenotype D (P = 0.01), compared to the control group. Cholesterol and low-density lipoprotein levels (P < 0.05) and GTT (P < 0.05) were increased, and HDL was decreased (was below 50) in all the four phenotypes and the control group (P < 0.05). Conclusion: The risk of metabolic alterations of glucose metabolism disorder and dyslipidemia in PCOS adolescents was more than non-PCOS counterparts.

Keywords: Metabolic syndrome, phenotype, polycystic ovarian syndrome


How to cite this article:
Akbarzadeh M, Naderi T, Dabbaghmanesh MH. The glucose metabolism disorder and dyslipidemia among girls with different phenotype polycystic ovary syndrome. J Res Med Sci 2019;24:72

How to cite this URL:
Akbarzadeh M, Naderi T, Dabbaghmanesh MH. The glucose metabolism disorder and dyslipidemia among girls with different phenotype polycystic ovary syndrome. J Res Med Sci [serial online] 2019 [cited 2019 Sep 20];24:72. Available from: http://www.jmsjournal.net/text.asp?2019/24/1/72/265628




  Introduction Top


Polycystic ovarian syndrome (PCOS) is multifactorial with a genetic component and the most prevalent endocrine disorder among women of reproductive ages. Women's “diagnostic criteria” for PCOS in various age groups (15–45 years) were 9%–18%.[1],[2]

A previous study indicated that PCOS affected the metabolism of carbohydrates, lipids, and amino acids. In addition, lactate, long-chain fatty acids, triglycerides (TGs), and low-density lipoprotein (LDL) levels increased, while glucose, phosphatidylcholine, and high-density lipoprotein (HDL) concentrations decreased in the patients with PCOS compared to the control group.[3] Besides, different phenotypes of PCOS include (a) hyperandrogenism and PCOS and oligomenorrhea, (b) hyperandrogenism and oligomenorrhea, (c) hyperandrogenism and PCOS, and (d) PCOS and oligomenorrhea.[3],[4]

Although a large number of studies have been conducted on the prevalence and parameters of this syndrome and its relationship with cardiovascular diseases among adults,[5],[6] no exact definition is available for this syndrome in childhood and adolescence.[7] Based on the third National Health and Nutrition Examination Survey, a previous study reported the prevalence of metabolic syndrome (MS) to be 8.6% among adolescents.[8] In another study on the adolescents suffering from PCOS, the prevalence of MS was 18.8%, and it was related to body fat; also, the range of prevalence of lipid accumulation product was 8.6%–18.8%.[8]

Considering the increasing prevalence of MS among adolescents in developed counties, Asian countries,[9] and Iran,[10] paying attention to prevention and treatment of this disorder is of great importance in promotion of health. In this way, interventional programs can be developed and effective measures can be taken to prevent and treat the components of MS. The aim of study was determination of the prevalence of glucose metabolism disorder and dyslipidemia among girls with PCOS.


  Materials and Methods Top


Research design and study population

This study was approved by the ethics committee of Shiraz University of Medical Sciences. The target sample size was 3200 girls aged 14–18 years based on the previous studies conducted on the issue 18 and the following formula and considering the loss rate of 20%. Of the 41 public high schools in four districts of Shiraz, 16 were selected and 3–4 schools were considered randomly as clusters. In a school, the students were selected based on purposive sampling [Figure 1].
Figure 1: Flow diagram for sampling

Click here to view


The inclusion criteria of the study were the age range of 14–18 years and not having consumed any medications for at least 3 months before the study. The exclusion criteria of the study were passage of <2 years from the onset of menarche and not having adrenal, thyroid, hyperprolactinemia, and amenorrhea disorders. Then, the girls with clinical hyperandrogenism (acne, hirsutism, and alopecia) and oligomenorrhea underwent ultrasound and biochemical tests. Ultrasound was based on the criteria proposed by Adams et al. According to Akbarzada et al., the most important of them are existence of 10 small peripheral follicles.[11] It should be noted that the ultrasound specialist was unaware of the results of the patients' clinical examinations and biochemical tests.

Oral glucose tolerance test (OGTT) was done by a standard 75 g oral glucose given to the individual after 10–12 h overnight fasting. Venous blood sample was taken 2 h after glucose load for fasting (FBS). Blood glucose levels were evaluated based on the criteria proposed by World Health Organization. Accordingly, blood glucose levels >140 mg/dl or <200 mg/dl were considered as glucose tolerance disorder.[12] Lipid profile including serum TG and cholesterol (Ch) and HDL was determined by commercial enzymatic methods; the kit used was Biomerieux Ltd., France. In addition, LDL-cholesterol was evaluated using Friedewald formula as follows: LDL = Chol-TG/5 + HDL.

In the second stage, based on clinical hyperandrogenism (acne, hirsutism, and alopecia), oligomenorrhea, ultrasound, and biochemical tests, 146 participants were diagnosed with PCOS by the specialist consultant (endocrinologist).

In the third stage, all the girls with PCOS (146 participants) were entered into the case group, while 46 participants with no symptoms were considered as the control group. In this study, the parameters of MS were identified based on adult treatment panel ø criteria, i.e., waist circumference >90th percentile based on age/sex,[13] FBS >100 mg/dl, TG >110 mg/dl, and HDL <40 mg/dl.[14]

In this study, PCOS was diagnosed according to Rotterdam criteria. Based on the definition proposed by the society of reproduction and embryology in Europe and America's fertility committee in Rotterdam conference in 2003, 2 of the 3 following criteria are used as the diagnostic criteria of PCOS: (1) oligoovulation or anovulation, (2) clinical symptoms of hyperandrogenism or hyperandrogenemia, and (3) existence of polycystic ovary in sonography with exclusion of other endocrine disorders.[15]

Data analysis

The study data were analyzed through SPSS statistical software (version 16; SPSS Inc., Chicago, IL, USA), using t-test. All the tests were performed with confidence interval of 95% and P≤ 0.05.

Ethical considerations

This article was extracted from the research proposal approved by Student Research Committee of Shiraz University of Medical Sciences (proposal No. 6020), and all the authors approved this study.


  Results Top


The participants' mean age in the case and control groups was 16.17 ± 1.25 and 16.01 ± 1.1 years, respectively. The results showed a significant difference between the control group and the four phenotypes of the case group regarding the weight and body mass index (P < 0.001). The results indicated a significant difference between Phenotype B and the control group (P = 0.03) as well as between Phenotype D and the control group (P = 0.018) concerning serum TG level. Nonetheless, HDL was below 40 in both groups, and no significant difference was observed among the four phenotypes in this regard (P < 0.05). On the other hand, all the four phenotypes of PCOS were different from the control group with regard to cholesterol and LDL levels (P < 0.05) [Table 1].
Table 1: The mean of the type of lipid in different phenotypes of polycystic ovarian syndrome

Click here to view


FBS was below 100 in both study groups, and no significant difference in this regard was observed between the control group and all the phenotypes of PCOS (P < 0.05), except for clinical hyperandrogenism and oligomenorrhea (P = 0.04).

The mean of glucose tolerance test (GTT) was higher in the four phenotypes of PCOS compared to the control group; however, the results of t-test showed that this difference was not statistically significant (P < 0.05) [Table 2].
Table 2: The mean of fasting blood sugar and glucose tolerance test in different phenotypes of polycystic ovarian syndrome

Click here to view



  Discussion Top


The results of the present study showed that TGs and blood lipid levels (cholesterol and LDL) were higher in the case group, while HDL level was lower in the entire population under the study. In addition, the most prevalent metabolic disorder was lower HDL and higher LDL in all the four phenotypes. However, Braga-Tavares and Fonseca reported that android obesity was the most (98.7% and 89.5%) and increase in blood glucose level was the least (2.5% and 1.3%) prevalent disorder.[16]

The results of our study showed that increased levels of TG and cholesterol and decreased HDL levels in the PCOS with phenotype B were higher.

In another study in Iran, worse metabolic results were reported in the phenotypes associated with the presence of hyperandrogenism (Type A, B, C); the results were similar to those of our study. [17] Furthermore, a significant relationship was found between these risk factors and coronary artery lesions and atherosclerosis in deaths resulting from cardiovascular disorders.[18],[19] In a cohort study with a 25-year follow-up, the prevalence of cardiovascular diseases was 19.4% among the adults who had the clinical features of MS in childhood compared to 1.5% among those who lacked these features.[20]

Based on the findings of the present study, the mean of GTT was higher in different phenotypes of PCOS compared to the control group. Nonetheless, no cases with diabetes mellitus were found in the study groups, and all the participants had normal FBS levels. Yet, the mean of FBS was higher in PCOS Type A and Type D phenotypes compared to the control group. Recent studies have shown that fasting plasma glucose is not a sensitive method for diagnosis of diabetes in the patients suffering from PCOS.[21] In addition, incidence of diabetes in high-risk individuals requires long-term encounter with FBS and glucose intolerance. Considering the age of the individuals under the current study (14–18 years), hyperinsulinemia might not have affected the blood glucose changes greatly. In this regard, in a study in Austria, a group of women with normal weight underwent screening tests, such as glycated hemoglobin (HbA1c) and FBS. Based on OGTT, the incidence rate of diabetes was 12.8%. However, the results of HbA1c and fasting blood glucose indicated that, respectively, 3.2% and 5.2% of the patients were diagnosed with prediabetes. Thus, the researchers came to the conclusion that although OGTT is time-consuming, neither fasting blood glucose nor HbA1c could be used as appropriate screening tests for glucose tolerance disorder in PCOS.[22]

Hormonal fluctuations during transition to adolescence, which can lead to metabolic changes, may imitate MS characteristics. This has long attracted the researchers' attention.[23] In a study on 1098 adolescents, almost half of the participants were diagnosed with MS, but this diagnosis changed during the observation period 3 years later.[24] This might have resulted from lack of objective criteria for identification of MS in adolescents.

Overall, in our study, more metabolic abnormalities in Phenotypes B, C, and A were estimated, and minimal changes were seen in the Phenotype D. Our results are consistent with those of other studies.[25],[26]

One of the limitations of the present study was restriction of doing physical examinations at schools. However, the majority of the students were convinced after the advantages of participation in the study were explained to them.


  Conclusion Top


The results of the current study showed that the serum TG, cholesterol, and LDL levels were higher and HDL levels were lower in different phenotypes of PCOS. However, FBS and 2-h postprandial blood sugar were normal in both study groups. Given that PCOS is diagnosed in the ages around puberty, researchers must screen the syndrome and its risk factors.

Acknowledgments

This article was extracted from the research proposal approved by Student Research Committee of Shiraz University of Medical Sciences (proposal No. 6020). The authors would like to thank the Student Research Committee of Shiraz University of Medical Sciences for financially supporting this research. The authors would like to thank the girls and all the individuals who helped in performance of the research and also the Center for Development of Clinical Research of Nemazee Hospital and Dr. Nasrin Shokrpour for editorial assistance.

Financial support and sponsorship

The authors would like to thank the Student Research Committee of Shiraz University of Medical Sciences for financially supporting this research.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod 2010;25:544-51.  Back to cited text no. 1
    
2.
Baillargeon JP. Use of insulin sensitizers in polycystic ovarian syndrome. Curr Opin Investig Drugs 2005;6:1012-22.  Back to cited text no. 2
    
3.
Dabbaghmanesh MH, Naderi T, Akbarzadeh M, Tabatabaee H. Metabolic syndrome in Iranian adolescents with polycystic ovary syndrome. Int J Adolesc Med Health 2017. pii:/j/ijamh.ahead-of-print/ijamh-2017-0029/ijamh-2017-0029.xml.  Back to cited text no. 3
    
4.
Akbarzadeh M, Morshed Behbahani B, Naderi T, Dabbaghmaneh MH, Zare N. The survey of central obesity and BMI associated with different phenotypes of polycystic ovary syndrome in adolescents. Int J Afr Nurs Sci 2015;3:82-5.  Back to cited text no. 4
    
5.
Arnlöv J, Ingelsson E, Sundström J, Lind L. Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men. Circulation 2010;121:230-6.  Back to cited text no. 5
    
6.
Aschner P. Metabolic syndrome as a risk factor for diabetes. Expert Rev Cardiovasc Ther 2010;8:407-12.  Back to cited text no. 6
    
7.
Huang TT, Sun SS, Daniels SR. Understanding the nature of metabolic syndrome components in children and what they can and cannot do to predict adult disease. J Pediatr 2009;155:e13-4.  Back to cited text no. 7
    
8.
Johnson WD, Kroon JJ, Greenway FL, Bouchard C, Ryan D, Katzmarzyk PT. Prevalence of risk factors for metabolic syndrome in adolescents: National health and nutrition examination survey (NHANES), 2001-2006. Arch Pediatr Adolesc Med 2009;163:371-7.  Back to cited text no. 8
    
9.
Misra A, Khurana L. The metabolic syndrome in South Asians: Epidemiology, determinants, and prevention. Metab Syndr Relat Disord 2009;7:497-514.  Back to cited text no. 9
    
10.
Afkhami-Ardekani M, Zahedi-Asl S, Rashidi M, Atifah M, Hosseinpanah F, Azizi F. Incidence and trend of a metabolic syndrome phenotype among Tehranian adolescents: Findings from the Tehran lipid and glucose study, 1998-2001 to 2003-2006. Diabetes Care 2010;33:2110-2.  Back to cited text no. 10
    
11.
Akbarzadeh M, Naderi T, Dabbaghmanesh MH, Zare N, Zare Z. The survey of cutaneous manifestations in adolescents suffering from poly cystic ovarian syndrome. Asian J Dermatol 2013;5:11-21.  Back to cited text no. 11
    
12.
Akbarzadeh M, Moradi F, Dabbaghmanesh MH, Jafari P, Parsanezhad ME. A survey of metabolic syndrome in first-degree relatives (fathers) of patients with polycystic ovarian syndrome. J Endocrinol Metab Diabetes South Afr 2013;18:98-103.  Back to cited text no. 12
    
13.
Li C, Ford ES, Mokdad AH, Cook S. Recent trends in waist circumference and waist-height ratio among US children and adolescents. Pediatrics 2006;118:e1390-8.  Back to cited text no. 13
    
14.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004;27 Suppl 1:S5-10.  Back to cited text no. 14
    
15.
Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004;81:19-25.  Back to cited text no. 15
    
16.
Braga-Tavares H, Fonseca H. Prevalence of metabolic syndrome in a Portuguese obese adolescent population according to three different definitions. Eur J Pediatr 2010;169:935-40.  Back to cited text no. 16
    
17.
Tehrani FR, Rashidi H, Khomami MB, Tohidi M, Azizi F. The prevalence of metabolic disorders in various phenotypes of polycystic ovary syndrome: A community based study in Southwest of Iran. Reprod Biol Endocrinol 2014;12:89.  Back to cited text no. 17
    
18.
Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 1998;338:1650-6.  Back to cited text no. 18
    
19.
Heidary M, Yazdanpanahi Z, Dabbaghmanesh MH, Parsanezhad ME, Emamghoreishi M, Akbarzadeh M. Effect of chamomile capsule on lipid- and hormonal-related parameters among women of reproductive age with polycystic ovary syndrome. J Res Med Sci 2018;23:33.  Back to cited text no. 19
[PUBMED]  [Full text]  
20.
Morrison JA, Friedman LA, Gray-McGuire C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: The Princeton lipid research clinics follow-up study. Pediatrics 2007;120:340-5.  Back to cited text no. 20
    
21.
Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997;20:1183-97.  Back to cited text no. 21
    
22.
Lerchbaum E, Schwetz V, Giuliani A, Obermayer-Pietsch B. Assessment of glucose metabolism in polycystic ovary syndrome: HbA1c or fasting glucose compared with the oral glucose tolerance test as a screening method. Hum Reprod 2013;28:2537-44.  Back to cited text no. 22
    
23.
Cırık DA, Dilbaz B. What do we know about metabolic syndrome in adolescents with PCOS? J Turk Ger Gynecol Assoc 2014;15:49-55.  Back to cited text no. 23
    
24.
Goodman E, Daniels SR, Meigs JB, Dolan LM. Instability in the diagnosis of metabolic syndrome in adolescents. Circulation 2007;115:2316-22.  Back to cited text no. 24
    
25.
Guo M, Chen ZJ, Eijkemans MJ, Goverde AJ, Fauser BC, Macklon NS. Comparison of the phenotype of Chinese versus Dutch Caucasian women presenting with polycystic ovary syndrome and oligo/amenorrhoea. Hum Reprod 2012;27:1481-8.  Back to cited text no. 25
    
26.
Panidis D, Tziomalos K, Misichronis G, Papadakis E, Betsas G, Katsikis I, et al. Insulin resistance and endocrine characteristics of the different phenotypes of polycystic ovary syndrome: A prospective study. Hum Reprod 2012;27:541-9.  Back to cited text no. 26
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
Previous article  Next article
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Introduction
Materials and Me...
Results
Discussion
Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed125    
    Printed0    
    Emailed0    
    PDF Downloaded23    
    Comments [Add]    

Recommend this journal